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Over the past few years, asymmetric alkylation reactions
of acetals have attained a prominent position in organic
synthesis.1 Methods employing either chiral acetals or
promoters are well-known; however, those utilizing a sub-
stoichiometric quantity of catalyst on either achiral or
racemic acetals are few,2 and procedures employing N,O-
acetals remain unknown. We anticipated that the asym-
metric alkylation of N,O-acetals could efficiently lead to
useful chiral amines and amino acid derivatives, especially
in cases where the corresponding imines are less easily
accessed (eq 1). However, in order for an asymmetric variant

to be successful, the Lewis acid catalyst must effectively
serve a dual role, namely to dissociate RO- and subsequently
to activate the intermediate imine toward enantioselective
addition. When X is an electron-withdrawing group, we have
found that racemic hemiacetals 1a-1h possessing a flexible
range of N-protecting groups become stable, convenient
precursors to useful enantioenriched products.3 We describe
the first high-yielding (73-93%) asymmetric alkylations (ee’s
up to 96%) of conveniently prepared N,O-acetals using our
versatile chiral Cu(I)-based Lewis acid catalyst 2. We also
summarize a process to synthesize several non-natural
amino acids4 in high yield using readily available precursors
via an in situ generation of N,O-acetals in a one-pot

procedure.5 We discovered that a unique transilylation
reaction starts off the catalytic, enantioselective alkylation;
other mechanistic investigations of our process reveal novel
features that may lend general significance to alkylations
of acetals by enol silanes.

When a solution of 1a and catalyst 2 (6 mol %) was mixed
at 0 °C with 2 equiv of enol silane 4a for 5 h, compound 5a
was produced in 93% yield and 95% ee (Table 1, entry 1).6
Although substrate 1a (X ) Ts, R ) H) is a highly crystalline
and stable starting material, removal of the tosyl group in
a subsequent step requires long reaction times and highly
acidic conditions.7 We envisaged that other more easily
removable sulfonamido protecting groups could be substi-
tuted for the tosyl group to provide complementary depro-
tection procedures. For example, acetal 1b, containing a 2,6-
dimethyl-4-methoxybenzenesulfonyl (Mds)8 group, reacts
with enol silane 4a in the presence of 6 mol % 2 to yield 5d
(87% yield, 94% ee, entry 4). It is noteworthy that the nature
of the leaving group in substrate 1c (OH vs OEt) does not
significantly lower the yield or selectivity of product 5d
(entry 5). Similarly, the 4-nitrophenylsulfonamido (Ns)9

acetal 1d affords product 5e in 87% ee and 89% yield (entry
6). Excellent selectivity (up to 96% ee) can also be achieved
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Table 1. Reactions of N,O-Acetals and Various
Nucleophiles Catalyzed by Complex 2

entry acetal Nu Xa R
yield
(%)

ee
(%) product

1 1a 4a Ts H 93 95 5a
2 1a 4bb Ts H 85 90 5b
3 1a 4c Ts H 81 76 5c
4 1b 4ab Mds H 87 94 5d
5 1c 4ab Mds Et 92 90 5d
6 1d 4ab Ns Et 89 87 5e
7 1e 4a Ms H 89 85 5f
8 1f 4a SES H 78 96 5g
9 1f 4bb SES H 73 89 5h

10 1f 4c SES H 75 70c 5i
11 1g 4a Ac H 86 50 5j
12 1h 4a Ac Ac 88 42 5j
13 1d 4d Ns Et 85 87 5k
a Abbreviations: Ts ) p-toluenesulfonyl, Mds ) 2,6-dimethyl-

4-methoxybenzenesulfonyl, Ns ) p-nitrobenzenesulfonyl, Ms )
methanesulfonyl, SES ) trimethylsilylethanesulfonyl. Enantio-
meric excesses were determined by CHIRALCEL OD chiral HPLC
column unless otherwise noted. b Reaction carried out in refluxing
CH2Cl2. c Enantiomeric excesses determined by 1H NMR in the
presence of Pr(hfc)3 chiral shift reagent.
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by using the trimethylsilylethanesulfonamido (SES)10 sub-
stituent on the N,O-acetal to form products 5g, 5h, and 5i
(entries 8-10). A slight loss in selectivity is noted when the
steric bulk of the sulfonamido group is diminished, as shown
in the alkylation of 1e (X ) Ms; 85% ee, entry 7). However,
the decrease in selectivity is more pronounced in the
alkylations of amide acetals 1g and 1h, affording product
5j in modest ee (entries 11 and 12). These results confirm
that the sulfonyl group is an important factor in determining
enantioselectivity.

To demonstrate the flexibility of the alkylation reaction,
we tested a number of nucleophiles representing several
classes. For example, allylsilane 4b11 reacts with both
substrates 1a and 1f to afford products 5b and 5h in
excellent yield and selectivity (entries 2 and 9). Ketene acetal
4c also reacts well with these substrates to yield compounds
5c and 5i in 76% and 70% ee, respectively (entries 3 and
10). Once again, an array of sulfonamido groups including
SES,10 Mds,8 and Ns9 were highlighted. In the deprotection
step, compounds 5d, 5e, and 5g can be converted to amine
hydrochloride 6a in yields ranging from 75 to 87% with no
detectable racemization (eq 2).12 In fact, we used this

methodology for the multigram synthesis of L-3-nitroben-
zoylalanine (6b, eq 2) in 48% overall yield from 1d (entry
13) using only 1 mol % 2. This compound is currently of
interest as an inhibitor of enzymes that metabolize trypo-
tophan, including kynurenine-3-hydroxylase and kynureni-
nase.13 In an effort to further simplify the synthesis of
protected amino acids 5a-5j, an efficient one-pot procedure
was developed. The condensation of ethyl glyoxylate and
p-toluenesulfonamide was done in CH2Cl2 over a 6 h period
in the presence of catalyst 2 (6 mol %). The reaction mixture
was then cooled to 0 °C, and 2 equiv of nucleophile 4a was
added. After 2 h, the reaction was subjected to aqueous
workup, and the product was isolated in 89% yield and 95%
ee. A one-pot procedure was also implemented for the
synthesis of compound 5g (76% yield, 93% ee).

To our surprise, the use of 1 equiv of enol silane 4a with
N,O-acetal 1a did not lead to product 5a with 6 mol % 2;
however, when 2 equiv was used, product 5a was formed in
good yield. Although silyl ketene acetals can be quenched
through silyl transfer reactions with alcohols, enol silanes

are not well-precedented to act as silylating reagents.14 This
anomaly prompted us to determine mechanistic details of
the enol silane reaction through 1H NMR experiments. For
example, when acetal 1a was dissolved in CD2Cl2 along with
1 equiv of enol silane 4a, an immediate change in the 1H
NMR spectrum occurred. The enol silane resonances disap-
peared, and those characteristic of acetophenone developed.
A second equiv of enol silane 4a was then added to the
mixture, and the reaction was monitored; no product forma-
tion was noted even after extended periods of time. After
addition of the catalyst 2, however, resonances due to
product began to appear.15 Interestingly, peaks due to the
intermediate imine 316 were not observed, nor were those
for the N-trimethylsilylated product 7 (Scheme 1). In our
previous work, imine 3 (X ) Ts) reacts with enol silane 4a
in the presence of catalyst 2 to produce 7 exclusively (Scheme
1)3 that retains its silyl group through aqueous workup. In
fact, product 7 will only partially desilylate in the presence
of 1:1 THF/H2O even after several hours but can be desilyl-
ated immediately upon treatment with fluoride or standard
column chromatography on silica gel. In the reaction of N,O-
acetal 1a with enol silane 4a no silylated product is observed
by 1H NMR or TLC. This finding leads us to suggest that
adventitious water, silanol, or an LnCu‚ROH species is
protonating the product immediately after alkylation,17 as
shown in a possible mechanism (Scheme 1). Not surprisingly,
only 1 equiv of enol silane 4a is needed to alkylate N,O-
acetals 1c and 1d in which O-silylation cannot take place.
Further studies on the scope and mechanism of the asym-
metric reactions of N,O-acetals are underway and will be
reported in due course.
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Scheme 1. Proposed Mechanism of N,O-Alkylation
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